A flexible approach to Bayesian multiple curve fitting

نویسندگان

  • Carsten H. Botts
  • Michael J. Daniels
چکیده

We model sparse functional data from multiple subjects with a mixed-effects regression spline. In this model, the expected values for any subject (conditioned on the random effects) can be written as the sum of a population curve and a subject-specific deviate from this population curve. The population curve and the subject-specific deviates are both modeled as free-knot b-splines with k and k' knots located at t(k) and t(k'), respectively. To identify the number and location of the "free" knots, we sample from the posterior p (k, t(k), k', t(k')|y) using reversible jump MCMC methods. Sampling from this posterior distribution is complicated, however, by the flexibility we allow for the model's covariance structure. No restrictions (other than positive definiteness) are placed on the covariance parameters ψ and σ(2) and, as a result, no analytical form for the likelihood p (y|k, t(k), k', t(k')) exists. In this paper, we consider two approximations to p(y|k, t(k), k', t(k')) and then sample from the corresponding approximations to p(k, t(k), k', t(k')|y). We also sample from p(k, t(k), k', t(k'), ψ, σ(2)|y) which has a likelihood that is available in closed form. While sampling from this larger posterior is less efficient, the resulting marginal distribution of knots is exact and allows us to evaluate the accuracy of each approximation. We then consider a real data set and explore the difference between p(k, t(k), k', t(k'), ψ, σ(2)|y) and the more accurate approximation to p(k, t(k), k', t(k')|y).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Bayesian Estimation of the Multiple Change Points in Gamma Process Using X-bar chart

The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma process. In addition, we consider the possibility o...

متن کامل

Bayesian Curve Fitting Using Multivariate Normal Mixtures

Problems of regression smoothing and curve fitting are addressed via predictive inference in a flexible class of mixture models. Multidimensional density estimation using Dirichlet mixture models provides the theoretical basis for semi-parametric regression methods in which fitted regression functions may be deduced as means of conditional predictive distributions. These Bayesian regression fun...

متن کامل

Small Sample Bayesian Factor Analysis

Factor analysis (FA) is a statistical technique to explain the correlation structure among observed variables. It can e.g. be useful in the analysis of Patient Reported Outcomes, which typically use multiple questions to measure a single concept. Maximum likelihood factor analysis (ML-FA) relies on large sample theory, and it is consequently often recommended to use it only in large samples (e....

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

A general class of hierarchical ordinal regression models with applications to correlated ROC analysis

The authors discuss a general class of hierarchical ordinal regression models that includes both location and scale parameters, allows link functions to be selected adaptively as finite mixtures of normal cumulative distribution functions, and incorporates flexible correlation structures for the latent scale variables. Exploiting the well known correspondence between ordinal regression models a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational statistics & data analysis

دوره 52 12  شماره 

صفحات  -

تاریخ انتشار 2008